파이토치로 배우는 자연어 처리
쉽고 빠르게 익히는 자연어 처리 입문 가이드북
자연어 처리(NLP)는 인공지능이 지닌 무한한 능력을 이용해 애플 시리, 아마존 알렉사, 구글 번역 등과 같은 제품을 탄생시켰다. 복잡하고 어렵게만 여겨지던 자연어 처리는 파이썬 기반 딥러닝 라이브러리인 파이토치를 통해 딥러닝을 처음 접하는 개발자 및 데이터 과학자도 손쉽게 구현할 수 있게 되었다.
『파이토치로 배우는 자연어 처리』는 자연어 처리 및 딥러닝 알고리즘 학습에 필요한 내용을 다룬다. 또한 파이토치를 사용해 자연어 처리 과정에서 직면할 수 있는 문제와 다양한 텍스트를 표현하는 애플리케이션을 구축하는 방법을 보여준다. 딥러닝 및 자연어 처리 기초부터 난도 시퀀스 모델링까지 쉽고 빠르게 익혀보자.
프란시스코에 기반을 두고 머신러닝과 자연어 처리 연구에 특화된 컨설팅을 제공하는 회사인 주스트웨어Joostware의 창립자이다. 또한 뉴스 미디어의 팩트 체크 문제를 해결하고자 해커와A I 연구자들이 함께 만든 페이크 뉴스 챌린지Fake News Challenge의 공동 창립자다. 델립은 이전에 트위터와 아마존(알렉사Alexa )에서 NLP 연구와 제품 개발을 했다.
1장_소개
1.1 지도 학습
1.2 샘플과 타깃의 인코딩
1.3 계산 그래프
1.4 파이토치 기초
1.5 연습문제
1.6 요약
1.7 참고 문헌
2장_NLP 기술 빠르게 훑어보기
2.1 말뭉치, 토큰, 타입
2.2 유니그램, 바이그램, 트라이그램, …, n-그램
2.3 표제어와 어간
2.4 문장과 문서 분류하기
2.5 단어 분류하기: 품사 태깅
2.6 청크 나누기와 개체명 인식
2.7 문장 구조
2.8 단어 의미와 의미론
2.9 요약
2.10 참고 문헌
3장_신경망의 기본 구성 요소
3.1 퍼셉트론: 가장 간단한 신경망
3.2 활성화 함수
3.3 손실 함수
3.4 지도 학습 훈련 알아보기
3.5 부가적인 훈련 개념
3.6 예제: 레스토랑 리뷰 감성 분류하기
3.7 요약
3.8 참고 문헌
4장_자연어 처리를 위한 피드 포워드 신경망
4.1 다층 퍼셉트론
4.2 예제: MLP로 성씨 분류하기
4.3 합성곱 신경망
4.4 예제: CNN으로 성씨 분류하기
4.5 CNN에 관한 추가 내용
4.6 요약
4.7 참고 문헌
5장_단어와 타입 임베딩
5.1 임베딩을 배우는 이유
5.2 예제: CBOW 임베딩 학습하기
5.3 예제: 문서 분류에 사전 훈련된 임베딩을 사용한 전이 학습
5.4 요약
5.5 참고 문헌
6장_자연어 처리를 위한 시퀀스 모델링 - 초급
6.1 순환 신경망 소개
6.2 예제: 문자 RNN으로 성씨 국적 분류하기
6.3 요약
6.4 참고 문헌
7장_자연어 처리를 위한 시퀀스 모델링 - 중급
7.1 엘만 RNN의 문제점
7.2 엘만 RNN의 문제 해결책: 게이팅
7.3 예제: 문자 RNN으로 성씨 생성하기
7.4 시퀀스 모델 훈련 노하우
7.5 참조 문헌
8장_자연어 처리를 위한 시퀀스 모델링 - 고급
8.1 시퀀스-투-시퀀스 모델, 인코더-디코더 모델, 조건부 생성
8.2 강력한 시퀀스 모델링: 양방향 순환 모델
8.3 강력한 시퀀스 모델링: 어텐션
8.4 시퀀스 생성 모델 평가
8.5 예제: 신경망 기계 번역
8.6 요약
9장_고전 모델, 최신 모델, 더 배울 것들
9.1 지금까지 배운 내용
9.2 전통적인 NLP 주제
9.3 최신 NLP 모델
9.4 NLP 시스템을 위한 디자인 패턴
9.5 더 배울 것들
9.6 참고 문헌