상세정보
미리보기
테디노트의 랭체인을 활용한 RAG 비법노트 : 기본편
- 저자
- 이경록 저
- 출판사
- 리코멘드
- 출판일
- 2025-07-01
- 등록일
- 2025-10-20
- 파일포맷
- PDF
- 파일크기
- 13MB
- 공급사
- YES24
- 지원기기
-
PC
PHONE
TABLET
웹뷰어
프로그램 수동설치
뷰어프로그램 설치 안내
책소개
★ 8단계 RAG 파이프라인으로 LLM의 성능을 50점에서 90점으로 끌어올리는 RAG 시스템!
ChatGPT와 같은 LLM은 다양한 업무에 활용되지만, 최신 정보나 특정 문서 내용을 정확히 반영하지 못하는 한계가 있다. 이를 극복하는 대안이 RAG(검색 증강 생성) 기술이다. 이 책은 LangChain을 활용한 RAG 시스템을 ‘문서 로드 → 텍스트 분할 → 임베딩 → 벡터 저장 → 리트리버 검색 → 프롬프트 생성 → LLM 응답 생성 → 체인 구성’의 8단계로 정리하고 각 단계를 하나하나 실습하며 익힌다. 이 과정에서 LCEL 문법, 프롬프트 설계, 출력 포맷 처리법을 배우며, OpenAI, Hugging Face, Upstage, Ollama 등 다양한 모델과 연결하는 방법도 익힐 수 있다. 또한 Streamlit을 활용해 문서 검색, 이메일 자동화, 보고서 작성 챗봇, 멀티모달 챗봇 등 실무에 적용 가능한 다양한 웹 애플리케이션을 어렵지 않게 직접 제작할 수 있다.
저자소개
삼성전자 무선사업부에서 소프트웨어 엔지니어로 출발했다. 2018년 AI 교육·개발 스타트업 브레인크루를 창업하며 현장 개발에 뛰어들었고, 데이터 분석, 머신러닝, 딥러닝 공부를 했던 것을 기반으로 생성형 AI 시대를 맞아 기술과 삶을 잇는 실전 개발을 끊임없이 하고 있다. 특히 2023년부터는 LLM·RAG 애플리케이션을 제작하며 『랭체인 한국어 튜토리얼』을 공개해 LangChain·LangGraph 생태계를 국내에 확산시켰고, 지금은 기업과 대학을 오가며 강연과 컨설팅을 통해 더 많은 학습자와 조직이 AI를 손에 쥘 수 있도록 돕고 있다.
개발을 사랑하고 사람들과 소통하는 것을 즐기는 천직 개발자다. 또한 지식 공유의 즐거움을 원동력 삼아 LLM 애플리케이션의 최전선에서 ‘쉬운 기술 설명’을 전파하는 데 누구보다 진심이다. 특히 이 믿음으로 지식 공유 플랫폼 ‘테디노트’ 블로그와 유튜브 채널을 운영한다. 2025년 4월 현재 유튜브 구독자 4.2만 명, GitHub 튜토리얼 1,630개와 약 1,500명의 팔로워를 기록하며 입문자에게 친숙한 언어로 AI 개념과 최신 동향을 전하고 있다.
목차
프롤로그
추천사
독자들의 찬사
코드 리뷰어들의 후기
다운로드 및 문의
이 책의 구성
PART 01 처음 만나는 LangChain
CHAPTER 01 RAG 이해하기
01 RAG를 사용해야 하는 이유
02 RAG의 기막힌 능력
03 LangChain을 이용한 RAG 시스템 구축
CHAPTER 02 환경 설정
01 윈도우에서 환경 설치
02 MacOS에서 환경 설치
03 OpenAI API 키 발급 및 설정하기
04 LangSmith 키 발급 및 설정하기
CHAPTER 03 LLM 기본 용어
01 Jupyter Notebook 사용법
02 토큰, 토큰 계산기, 모델별 토큰 비용
03 모델의 입출력과 컨텍스트 윈도우
CHAPTER 04 LangChain 시작하기
01 ChatOpenAI 주요 매개변수와 출력
02 LangSmith로 GPT 추론 내용 추적하기
03 멀티모달 모델로 이미지를 인식하여 답변 출력하기
04 프롬프트 템플릿 활용하기
05 LCEL로 체인 생성하기
06 출력 파서를 체인에 연결하기
07 batch() 함수로 일괄 처리하기
08 비동기 호출 방법
09 Runnable로 병렬 체인 구성하기
10 값을 전달해 주는 RunnablePassthrough
11 병렬로 Runnable을 실행하는 RunnableParallel
12 함수를 실행하는 RunnableLambda와 itemgetter
PART 02 프롬프트와 출력 파서
CHAPTER 05 프롬프트
01 프롬프트 템플릿 만들기
02 부분 변수 활용하기
03 YAML 파일로부터 프롬프트 템플릿 로드하기
04 ChatPromptTemplate
05 MessagesPlaceholder
06 퓨샷 프롬프트
07 예제 선택기
08 FewShotChatMessagePromptTemplate
09 목적에 맞는 예제 선택기
10 LangChain Hub에서 프롬프트 공유하기
CHAPTER 06 출력 파서
01 PydanticOutputParser
02 with_structured_output() 바인딩
03 LangSmith에서 출력 파서의 흐름 확인하기
04 쉼표로 구분된 리스트 출력 파서
05 구조화된 출력 파서
06 JSON 형식 출력 파서
07 Pandas 데이터프레임 출력 파서
08 날짜 형식 출력 파서
09 열거형 출력 파서
PART 03 모델과 메모리
CHAPTER 07 모델
01 RAG에서 LLM의 역할과 모델의 종류
02 다양한 LLM 활용 방법과 API 키 가져오기
03 LLM 답변 캐싱하기
04 직렬화와 역직렬화로 모델 저장 및 로드하기
05 GPT 모델의 토큰 사용량 확인하기
06 Google Generative AI 모델
07 Hugging Face Inference API 활용하기
08 Dedicated Inference Endpoint로 원격 호스팅하기
09 Hugging Face 로컬 모델 다운로드 받아 추론하기
10 Ollama 설치 및 Modelfile 설정하기
11 Ollama 모델 생성하고 ChatOllama 활용하기
12 GPT4All로 로컬 모델 실행하기
CHAPTER 08 메모리
01 대화 버퍼 메모리
02 대화 버퍼 윈도우 메모리
03 대화 토큰 버퍼 메모리
04 대화 엔티티 메모리
05 대화 지식 그래프 메모리
06 대화 요약 메모리
07 벡터 스토어 검색 메모리
08 LCEL 체인에 메모리 추가하기
09 SQLite에 대화 내용 저장하기
10 휘발성 메모리로 일반 변수에 대화 내용 저장하기
PART 04 데이터 로드와 텍스트 분할
CHAPTER 09 문서 로더
01 문서 로더의 구조 이해하기
02 PDF 로더
03 HWP 로더
04 CSV 로더와 데이터프레임 로더
05 WebBaseLoader
06 DirectoryLoader
07 UpstageDocumentParseLoader
08 LlamaParse
CHAPTER 10 텍스트 분할
01 문자 단위로 분할하기
02 문자 단위로 재귀적으로 분할하기
03 토큰 단위로 분할하기
04 의미 단위로 분할하기
05 코드 분할하기
06 마크다운 헤더로 분할하기
07 HTML 헤더로 분할하기
08 JSON 단위로 분할하기
PART 05 벡터 스토어와 리트리버
CHAPTER 11 임베딩
01 OpenAIEmbeddings
02 CacheBackedEmbeddings
03 HuggingFaceEmbeddings
04 UpstageEmbeddings
05 OllamaEmbeddings
CHAPTER 12 벡터 스토어
01 Chroma
02 FAISS
03 Pinecone
CHAPTER 13 리트리버
01 벡터 스토어 기반 리트리버
02 문서 압축기
03 양방향 리트리버
04 긴 문맥 재정렬
05 부모 문서 리트리버
06 다중 쿼리 생성 리트리버
07 다중 벡터 스토어 리트리버
08 셀프 쿼리 리트리버
09 시간 가중 벡터 스토어 리트리버
PART 06 LangChain 실습
CHAPTER 14 Streamlit으로 ChatGPT 웹 앱 제작하기
01 기본적인 웹 앱 형태 만들기
02 웹 앱에 체인 생성하기
03 프롬프트 타입 선택 기능 추가하기
CHAPTER 15 이메일 업무 자동화 챗봇
01 이메일 내용으로부터 구조화된 정보 추출하기
02 SerpAPI를 정보 검색에 활용하기
03 구조화된 답변을 다음 체인의 입력으로 추가하기
04 이메일의 주요 정보 및 검색 정보 기반 요약 보고서 챗봇
CHAPTER 16 다양한 모델을 활용한 챗봇
01 별도의 파이썬 파일로 기능 분리하기
02 GPT 대신 Deepseek 모델 사용하기
03 Ollama 모델을 사용한 RAG
04 멀티모달 모델을 활용한 이미지 인식 기반 챗봇
CHAPTER 17 RAG 챗봇
01 PDF 문서 기반 질의응답 RAG 만들기
02 프롬프트를 개선해 주는 프롬프트 메이커
03 페이지 분할 후 파일 업로드 기능 추가하기
04 PDF 기반 QA 챗봇 만들기
05 LangSmith 추적, 다양한 LLM을 RAG에 적용하기
06 프롬프트에 출처 표시하고 표 기능 추가하기
에필로그
찾아보기