Apache Airflow 기반의 데이터 파이프라인
Airflow 설치부터 파이프라인 작성, 테스트, 분석, 백필 그리고 배포 및 관리까지를 한 권으로 해결!이 책은 효과적인 데이터 파이프라인을 만들고 유지하는 방법을 설명하고 있으며, 이를 통해 여러분은 다양한 데이터 소스의 집계, 데이터 레이크와의 연결 및 클라우드 배포를 포함해서 가장 일반적인 사용법을 확인할 수 있다. 각 장의 설명과 튜토리얼 형태의 실용적인 가이드를 통해, Airflow를 구동하는 방향성 비순환 그래프(DAG)의 모든 내용과 요구사항에 맞게 파이프라인을 커스터마이징하는 방법을 다룬다. 이 책은 중급 이상의 파이썬 스킬을 보유한 데브옵스 엔지니어, 데이터 엔지니어, 머신러닝 엔지니어, 그리고 시스템 관리자를 위한 책이다.
네덜란드 암스테르담에 위치한 데이터 기반 솔루션을 개발하는 GoDataDriven의 데이터 엔지니어다. 소프트웨어 공학과 컴퓨터 과학에 대한 지식이 많은 그는 소프트웨어 개발이나 데이터 작업을 마치 어려운 퍼즐을 푸는 것처럼 즐겁게 한다. 오픈 소스 소프트웨어 작업을 선호하며, Apache Airflow 프로젝트의 기여자이자 암스테르담 Airflow 모임의 공동 주최자다.
옮긴이 머리말 xiii</br>번역서 추천사 xv</br>베타리더 후기 xvii</br>원서 추천사 xix</br>시작하며 xx</br>감사의 글 xxii</br>이 책에 대하여 xxiv</br>표지에 대하여 xxviii</br></br><b>PART I 기본편</b></br></br>CHAPTER 1 Apache Airflow 살펴보기 3</br>1.1 데이터 파이프라인 소개 4</br> 1.1.1 데이터 파이프라인 그래프 4 </br> 1.1.2 파이프라인 그래프 실행 6</br> 1.1.3 그래프 파이프라인과 절차적 스크립트 파이프라인 비교 7</br> 1.1.4 워크플로 매니저를 이용한 파이프라인 실행 9</br>1.2 Airflow 소개 10</br> 1.2.1 파이썬 코드로 유연한 파이프라인 정의 10</br> 1.2.2 파이프라인 스케줄링 및 실행 11</br> 1.2.3 모니터링과 실패 처리 13 </br> 1.2.4 점진적 로딩 및 백필 16</br>1.3 언제 Airflow를 사용해야 할까 16</br> 1.3.1 Airflow를 선택하는 이유 17 </br> 1.3.2 Airflow가 적합하지 않은 경우 17</br>1.4 이후 내용 18</br>요약 19</br></br>CHAPTER 2 Airflow DAG의 구조 20</br>2.1 다양한 소스에서 데이터 수집 21</br> 2.1.1 데이터 탐색 21</br>2.2 첫 번째 Airflow DAG 작성 23</br> 2.2.1 태스크와 오퍼레이터 차이점 27 </br> 2.2.2 임의 파이썬 코드 실행 27</br>2.3 Airflow에서 DAG 실행하기 30</br> 2.3.1 파이썬 환경에서 Airflow 실행 30</br> 2.3.2 도커 컨테이너에서 Airflow 실행하기 31</br> 2.3.3 Airflow UI 둘러보기 32</br>2.4 스케줄 간격으로 실행하기 36</br>2.5 실패한 태스크에 대한 처리 37</br>요약 40</br></br>CHAPTER 3 Airflow의 스케줄링 41</br>3.1 예시: 사용자 이벤트 처리하기 41</br>3.2 정기적으로 실행하기 43</br> 3.2.1 스케줄 간격 정의하기 43 </br> 3.2.2 Cron 기반의 스케줄 간격 설정하기 45</br> 3.2.3 빈도 기반의 스케줄 간격 설정하기 47</br>3.3 데이터 증분 처리하기 48</br> 3.3.1 이벤트 데이터 증분 가져오기 48</br> 3.3.2 실행 날짜를 사용하여 동적 시간 참조하기 49</br> 3.3.3 데이터 파티셔닝 51</br>3.4 Airflow의 실행 날짜 이해 53</br> 3.4.1 고정된 스케줄 간격으로 태스크 실행 53</br>3.5 과거 데이터 간격을 메꾸기 위해 백필 사용하기 56</br> 3.5.1 과거 시점의 작업 실행하기 56</br>3.6 태스크 디자인을 위한 모범 사례 57</br> 3.6.1 원자성 57 </br> 3.6.2 멱등성 59</br>요약 60</br></br>CHAPTER 4 Airflow 콘텍스트를 사용하여 태스크 템플릿 작업하기 62</br>4.1 Airflow로 처리할 데이터 검사하기 62</br> 4.1.1 증분 데이터를 적재하는 방법 결정하기 63</br>4.2 태스크 콘텍스트와 Jinja 템플릿 작업 65</br> 4.2.1 오퍼레이터의 인수 템플릿 작업 65</br> 4.2.2 템플릿에 무엇이 사용 가능할까요? 67</br> 4.2.3 PythonOperator 템플릿 70</br> 4.2.4 PythonOperator에 변수 제공 75</br> 4.2.5 템플릿의 인수 검사하기 76</br>4.3 다른 시스템과 연결하기 78</br>요약 86</br></br>CHAPTER 5 태스크 간 의존성 정의하기 87</br>5.1 기본 의존성 유형 88</br> 5.1.1 선형 의존성 유형 88 </br> 5.1.2 팬인/팬아웃(Fan-in/Fan-out) 의존성 89</br>5.2 브랜치하기 92</br> 5.2.1 태스크 내에서 브랜치하기 92 </br> 5.2.2 DAG 내부에서 브랜치하기 94</br>5.3 조건부 태스크 99</br> 5.3.1 태스크 내에서 조건 99 </br> 5.3.2 조건부 태스크 만들기 100</br> 5.3.3 내장 오퍼레이터 사용하기 102</br>5.4 트리거 규칙에 대한 추가 정보 102</br> 5.4.1 트리거 규칙이란? 103 </br> 5.4.2 실패의 영향 104</br> 5.4.3 기타 트리거 규칙 104</br>5.5 태스크 간 데이터 공유 106</br> 5.5.1 XCom을 사용하여 데이터 공유하기 106</br> 5.5.2 XCom 사용 시 고려사항 109</br> 5.5.3 커스텀 XCom 백엔드 사용하기 110</br>5.6 Taskflow API로 파이썬 태스크 연결하기 111</br> 5.6.1 Taskflow API로 파이썬 태스크 단순화하기 111</br> 5.6.2 Taskflow API를 사용하지 않는 경우 113</br>요약 115</br></br><b>PART II 중급편</b></br></br>CHAPTER 6 워크플로 트리거 119</br>6.1 센서를 사용한 폴링 조건 120</br> 6.1.1 사용자 지정 조건 폴링 123 </br> 6.1.2 원활하지 않는 흐름의 센서 처리 124</br>6.2 다른 DAG를 트리거하기 127</br> 6.2.1 TriggerDagRunOperator로 백필 작업 131</br> 6.2.2 다른 DAG의 상태를 폴링하기 132</br>6.3 REST/CLI를 이용해 워크플로 시작하기 135</br>요약 138</br></br>CHAPTER 7 외부 시스템과 통신하기 139</br>7.1 클라우드 서비스에 연결하기 140</br> 7.1.1 추가 의존성 패키지 설치하기 141 </br> 7.1.2 머신러닝 모델 개발하기 142</br> 7.1.3 외부 시스템을 사용하여 개발하기 147</br>7.2 시스템 간 데이터 이동하기 155</br> 7.2.1 PostgresToS3Operator 구현하기 156</br> 7.2.2 큰 작업을 외부에서 수행하기 160</br>요약 162</br></br>CHAPTER 8 커스텀 컴포넌트 빌드 163</br>8.1 PythonOperator로 작업하기 164</br> 8.1.1 영화 평점 API 시뮬레이션하기 164</br> 8.1.2 API에서 평점 데이터 가져오기 167</br> 8.1.3 실제 DAG 구축하기 170</br>8.2 커스텀 훅 빌드하기 173</br> 8.2.1 커스텀 훅 설계하기 173 </br> 8.2.2 MovielensHook로 DAG 빌드하기 179</br>8.3 커스텀 오퍼레이터 빌드하기 181</br> 8.3.1 커스텀 오퍼레이터 정의하기 182</br> 8.3.2 평점 데이터를 가져오기 위한 오퍼레이터 빌드하기 183</br>8.4 커스텀 센서 빌드하기 187</br>8.5 컴포넌트 패키징하기 190</br> 8.5.1 파이썬 패키지 부트스트랩 작업하기 191 </br> 8.5.2 패키지 설치하기 194</br>요약 195</br></br>CHAPTER 9 테스트하기 197</br>9.1 테스트 시작하기 198</br> 9.1.1 모든 DAG에 대한 무결성 테스트 198 </br> 9.1.2 CI/CD 파이프라인 설정하기 205 </br> 9.1.3 단위 테스트 작성하기 207</br> 9.1.4 Pytest 프로젝트 구성하기 209 </br> 9.1.5 디스크의 파일로 테스트하기 214</br>9.2 테스트에서 DAG 및 태스크 콘텍스트로 작업하기 216</br> 9.2.1 외부 시스템 작업 222</br>9.3 개발을 위해 테스트 사용하기 229</br> 9.3.1 DAG 완료 테스트하기 232</br>9.4 Whirl을 이용한 프로덕션 환경 에뮬레이션 233</br>9.5 DTAP 환경 생성하기 233</br>요약 234</br></br>CHAPTER 10 컨테이너에서 태스크 실행하기 235</br>10.1 다양한 오퍼레이터를 쓸 때 고려해야 할 점 235</br> 10.1.1 오퍼레이터 인터페이스 및 구현하기 236</br> 10.1.2 복잡하며 종속성이 충돌하는 환경 236</br> 10.1.3 제네릭 오퍼레이터 지향하기 237</br>10.2 컨테이너 소개하기 238</br> 10.2.1 컨테이너란 무엇인가? 238 </br> 10.2.2 첫 도커 컨테이너 실행하기 239</br> 10.2.3 도커 이미지 생성하기 240</br> 10.2.4 볼륨을 사용하여 데이터를 유지하기 243</br>10.3 컨테이너와 Airflow 245</br> 10.3.1 컨테이너 내의 태스크 245 </br> 10.3.2 왜 컨테이너를 사용하는가? 246</br>10.4 도커에서 태스크 실행하기 247</br> 10.4.1 DockerOperator 소개 247</br> 10.4.2 태스크를 위한 컨테이너 이미지 생성하기 249</br> 10.4.3 도커 태스크로 DAG 구성하기 252</br> 10.4.4 도커 기반의 워크플로 255</br>10.5 쿠버네티스에서 태스크 실행 256</br> 10.5.1 쿠버네티스 소개 257 </br> 10.5.2 쿠버네티스 설정하기 258</br> 10.5.3 KubernetesPodOperator 사용하기 261</br> 10.5.4 쿠버네티스 관련 문제 진단하기 265</br> 10.5.5 도커 기반 워크플로와 차이점 267</br>요약 268</br></br><b>PART III Airflow 실습</b></br></br>CHAPTER 11 모범 사례 271</br>11.1 깔끔한 DAG 작성 271</br> 11.1.1 스타일 가이드 사용 272 </br> 11.1.2 중앙에서 자격 증명 관리 276</br> 11.1.3 구성 세부 정보를 일관성 있게 지정하기 278</br> 11.1.4 DAG 구성 시 연산 부분 배제 280</br> 11.1.5 Factory 함수를 사용한 공통 패턴 생성 283</br> 11.1.6 태스크 그룹을 사용하여 관련된 태스크들의 그룹 만들기 286</br> 11.1.7 대규모 수정을 위한 새로운 DAG 생성 288</br>11.2 재현 가능한 태스크 설계 288</br> 11.2.1 태스크는 항상 멱등성을 가져야 합니다 289</br> 11.2.2 태스크 결과는 결정적이어야 합니다 289</br> 11.2.3 함수형 패러다임을 사용하여 태스크 설계합니다 290</br>11.3 효율적인 데이터 처리 291</br> 11.3.1 데이터의 처리량 제한하기 291 </br> 11.3.2 증분 적재 및 처리 292</br> 11.3.3 중간 단계 데이터 캐싱 293</br> 11.3.4 로컬 파일 시스템에 데이터 저장 방지 294</br> 11.3.5 외부/소스 시스템으로 작업을 이전하기 295</br>11.4 자원관리 295</br> 11.4.1 Pool을 이용한 동시성 관리하기 295</br> 11.4.2 SLA 및 경고를 사용하여 장기 실행 작업 탐지 297</br>요약 298</br></br>CHAPTER 12 운영환경에서 Airflow 관리 300</br>12.1 Airflow 아키텍처 301</br> 12.1.1 어떤 익스큐터가 적합한가? 302</br> 12.1.2 Airflow를 위한 메타스토어 설정 304</br> 12.1.3 스케줄러 자세히 살펴보기 306</br>12.2 익스큐터 설치 311</br> 12.2.1 SequentialExecutor 설정 312 </br> 12.2.2 LocalExecutor 설정 312</br> 12.2.3 CeleryExecutor 설정 313 </br> 12.2.4 KubernetesExecutor 설정 317</br>12.3 모든 Airflow 프로세스의 로그 확인 324</br> 12.3.1 웹 서버 로그 저장 325 </br> 12.3.2 스케줄러 로그 저장 326</br> 12.3.3 태스크 로그 저장 327 </br> 12.3.4 원격 저장소로 로그 보내기 328</br>12.4 Airflow 메트릭 시각화 및 모니터링 328</br> 12.4.1 Airflow로부터 메트릭 수집하기 329</br> 12.4.2 측정 항목을 전송하도록 Airflow 구성 331</br> 12.4.3 메트릭을 수집하도록 Prometheus 구성 331</br> 12.4.4 Grafana를 이용한 대시보드 생성 334</br> 12.4.5 무엇을 모니터링해야 하는가? 336</br>12.5 실패한 태스크에 대한 알림을 받는 방법 338</br> 12.5.1 DAG 및 오퍼레이터에서 경고 338 </br> 12.5.2 서비스 수준 계약 정의 341</br>12.6 확장성 및 성능 342</br> 12.6.1 실행중인 태스크의 최대 수 제어 343 </br> 12.6.2 시스템 성능 구성 344</br> 12.6.3 여러 스케줄러 실행 345</br>요약 346</br></br>CHAPTER 13 Airflow 보안 347</br>13.1 Airflow 웹 인터페이스에서 보안 348</br> 13.1.1 RBAC 인터페이스에서 사용자 추가 348</br> 13.1.2 RBAC 인터페이스 설정 352</br>13.2 미사용 데이터 암호화 353</br> 13.2.1 Fernet Key 생성 354</br>13.3 LDAP 서비스로 연결 355</br> 13.3.1 LDAP의 이해 356 </br> 13.3.2 LDAP 서비스에서 사용자 가져오기 358</br>13.4 웹 서버에 대한 트래픽 암호화 359</br> 13.4.1 HTTPS 이해 360 </br> 13.4.2 HTTPS용 인증서 구성 362</br>13.5 시크릿 관리 시스템에서 자격 증명 가져오기 366</br>요약 370</br></br>CHAPTER 14 프로젝트: 뉴욕에서 가장 빠른 길 찾기 371</br>14.1 데이터에 대한 이해 374</br> 14.1.1 Yellow Cab 파일 공유 375 </br> 14.1.2 Citi Bike REST API 376</br> 14.1.3 접근 계획 결정 377</br>14.2 데이터 추출 378</br> 14.2.1 Citi Bike 데이터 다운로드하기 378</br> 14.2.2 Yellow Cab 데이터 다운로드 380</br>14.3 데이터에 유사한 변환 적용 383</br>14.4 데이터 파이프 라인 구조화 388</br>14.5 재현 가능한 데이터 파이프 라인 개발 390</br>요약 392</br></br><b>PART IV 클라우드에서의 Airflow</b></br></br>CHAPTER 15 클라우드에서의 Airflow 395</br>15.1 클라우드 배포 정책 설계 396</br>15.2 클라우드 전용 오퍼레이터와 훅 397</br>15.3 관리형 서비스 398</br> 15.3.1 Astronomer.io 399 </br> 15.3.2 구글 Cloud Composer 400</br> 15.3.3 아마존 Managed Workflows for Apache Airflow 400</br>15.4 배포 전략 선택 401</br>요약 402</br></br>CHAPTER 16 AWS에서의 Airflow 404</br>16.1 AWS에서 Airflow 배포 404</br> 16.1.1 클라우드 서비스 선택 405 </br> 16.1.2 네트워크 설계 406</br> 16.1.3 DAG 동기화 추가 407 </br> 16.1.4 CeleryExecutor를 사용하여 스케일링 407</br> 16.1.5 추가 단계 409</br>16.2 AWS 전용 훅과 오퍼레이터 410</br>16.3 사용 사례: AWS Athena를 사용한 서버리스 영화 랭킹 구축 412</br> 16.3.1 개요 412 </br> 16.3.2 리소스 설정 413</br> 16.3.3 DAG 구현 416 </br> 16.3.4 리소스 정리 422</br>요약 422</br></br>CHAPTER 17 Azure에서의 Airflow 424</br>17.1 Azure에서 Airflow 배포 424</br> 17.1.1 서비스 선택 425 </br> 17.1.2 네트워크 설계 426</br> 17.1.3 CeleryExecutor를 사용하여 확장성 개선 428</br> 17.1.4 추가 단계 429</br>17.2 Azure 전용 훅/오퍼레이터 429</br>17.3 예제: Azure Synapse를 사용하여 서버리스 영화 랭킹 구축 430</br> 17.3.1 개요 430 </br> 17.3.2 리소스 구성 431</br> 17.3.3 DAG 구현 435 </br> 17.3.4 정리 작업 442</br>요약 442</br></br>CHAPTER 18 GCP에서의 Airflow 443</br>18.1 GCP에서 Airflow 배포 443</br> 18.1.1 서비스 선택 444 </br> 18.1.2 헬름으로 GKE에 배포 447</br> 18.1.3 구글 서비스와 연동하기 449 </br> 18.1.4 네트워크 설계 451</br> 18.1.5 CeleryExecutor를 사용한 스케일링 452</br>18.2 GCP 전용 훅과 오퍼레이터 455</br>18.3 사용 사례: GCP에서 서버리스 영화 랭킹 구축 460</br> 18.3.1 GCS로 데이터 업로드 461 </br> 18.3.2 BigQuery에 데이터 로드하기 463</br> 18.3.3 최고 영화 평점 추출 466</br>요약 468</br></br>APPENDIX A 실행 코드 예제 470</br>A.1 코드 구성 470</br>A.2 예제 실행 471</br> A.2.1 도커 환경 시작하기 471 </br> A.2.2 실행 중인 서비스 검사하기 472</br> A.2.3 환경 제거 472</br></br>APPENDIX B Airflow 1과 2의 패키지 구성 474</br>B.1 Airflow 1 패키지 구성 474</br>B.2 Airflow 2 패키지 구성 475</br></br>APPENDIX C Prometheus 메트릭 매핑 479