회원 로그인 창


따끈따끈! 신착 전자책

더보기

콘텐츠 상세보기
파이썬 날코딩으로 알고 짜는 딥러닝


파이썬 날코딩으로 알고 짜는 딥러닝

<윤덕호> 저 | 한빛미디어

출간일
2019-08-01
파일형태
PDF
용량
7 M
지원 기기
PC  태블릿PC
대출현황
보유1, 대출1, 예약중0
전자책 프로그램이 정상적으로 설치가 안되시나요?전자책 프로그램 수동 설치
콘텐츠 소개
저자 소개
목차
한줄서평

콘텐츠 소개

인공 신경망 원리와 응용을
파이썬 날코딩으로 정말 깊이 이해하자!


『파이썬 날코딩으로 알고 짜는 딥러닝』 은 딥러닝 알고리즘의 원리를 깊숙이 이해하고 이를 파이썬 코딩만으로 구현하는 데 주안점을 둔다. 이를 위해 가장 간단한 신경망 구조부터 복잡한 응용 구조까지 다양한 딥러닝 신경망 예제의 실제 구현 과정을 소개한다. 그 과정에서 독자는 딥러닝 알고리즘을 텐서플로 같은 프레임워크 없이도 개발하는 능력을 갖추게 된다. 딥러닝 알고리즘을 깊이 이해하면 역설적으로 프레임워크를 이용할 때의 장단점을 더 확실히 알 수 있다. 나아가 자신만의 새로운 딥러닝 신경망을 개발하는 밑거름이 될 것이다.

예제에서 다루는 다양한 데이터셋은 이 책의 또 하나의 매력이다. 각종 인공지능 챌린지 대회가 펼쳐지는 캐글 플랫폼에서 수집한 실전 데이터셋은 딥러닝 모델의 활용 범위에 대한 상상의 지평을 넓혀줄 것이다. 전복 나이 추정, 천체 펄서 여부 판정, 철판 불량 상태 분류, 꽃 사진 이미지나 도시 소음의 분류 등의 문제를 캐글 데이터셋을 이용해 다룬다. 이 밖에도 사무용품 이미지들로 구성된 오피스31 데이터셋, 필기체 문자 이미지들을 모은 엠니스트(MNIST) 데이터셋을 비롯해 영화 동영상 파일, 회화 이미지 파일, 오토마타 문법 등 다양한 종류의 데이터셋을 예제 프로그램에서 사용한다. 여러분이 자신만의 새로운 딥러닝 신경망을 개발하고, 딥러닝을 넘어서는 인공지능의 또 다른 지평을 향해 나아가는 첫걸음에 이 책이 도움이 되기를 기대해본다.

저자소개

서울대학교 컴퓨터공학과에서 공부하고 우리나라에 첫 번째 인공지능 바람이 휩쓸 무렵 석박사 과정을 거치면서 자연어 처리 분야를 연구했다. 10여 년간 한남대학교 정보통신공학과 교수로 학생들을 가르쳤으며 2000년부터 지금까지 (주)코난테크놀로지에 임원으로 재직하면서 각종 소프트웨어 개발에 빠져 살았다. 현재 사내 교육 프로그램인 코난아카데미를 운영하고 있다. 또한 인공지능 혁신성장동력 프로젝트 ‘비디오 튜링 테스트(VTT) 연구 사업’의 제3세부 과제 책임자로서 각종 딥러닝 연구에 이용될 학습용 멀티모달 메타데이터를 구축하고 메타데이터의 초벌 자동 생성 딥러닝 기법을 연구하고 있다. 그 외에 인문학과 축구, 커뮤니티 댄스 등으로 심신을 단련하며, 가끔 배우로 변신하여 연극 무대에 오르기도 한다.

목차

CHAPTER 0 들어가기
0.1 이 책의 구성
0.2 인공지능과 머신러닝, 딥러닝
0.3 동물의 신경세포, 뉴런
0.4 인공 신경망의 기본 유닛, 퍼셉트론
0.5 딥러닝을 위한 수학
0.6 예제 실습 환경 소개
0.7 마치며

[ PART I 단층 퍼셉트론(SLP) ]

CHAPTER 1 회귀 분석 : 전복의 고리 수 추정 신경망
1.1 단층 퍼셉트론 신경망 구조
1.2 텐서 연산과 미니배치의 활용
1.3 신경망의 세 가지 기본 출력 유형과 회귀 분석
1.4 전복의 고리 수 추정 문제
1.5 회귀 분석과 평균제곱오차(MSE) 손실 함수
1.6 경사하강법과 역전파
1.7 편미분과 손실 기울기의 계산
1.8 하이퍼파라미터
1.9 비선형 정보와 원-핫 벡터 표현
1.10 구현하기 : 전복 고리 수 추정 신경망
1.11 실행하기
1.12 마치며

CHAPTER 2 이진 판단 : 천체의 펄서 여부 판정 신경망
2.1 펄서 판정 문제
2.2 이진 판단 문제의 신경망 처리
2.3 시그모이드 함수
2.4 확률 분포와 정보 엔트로피
2.5 확률 분포의 추정과 교차 엔트로피
2.6 딥러닝 학습에서의 교차 엔트로피
2.7 시그모이드 교차 엔트로피와 편미분
2.8 계산값 폭주 문제와 시그모이드 관련 함수의 안전한 계산법
2.9 구현하기 : 펄서 여부 판정 신경망
2.10 실행하기
2.11 확장하기 : 균형 잡힌 데이터셋과 착시 없는 평가 방법
2.12 실행하기 : 확장된 펄서 여부 판정 신경망
2.13 마치며

CHAPTER 3 선택 분류 : 철판 불량 상태 분류 신경망
3.1 불량 철판 판별 문제
3.2 선택 분류 문제의 신경망 처리
3.3 소프트맥스 함수
3.4 소프트맥스 함수의 편미분
3.5 소프트맥스 교차 엔트로피
3.6 소프트맥스 교차 엔트로피의 편미분
3.7 시그모이드 함수와 소프트맥스 함수의 관계
3.8 구현하기 : 불량 철판 판별 신경망
3.9 실행하기
3.10 마치며

[ PART II 다층 퍼셉트론(MLP ]

CHAPTER 4 다층 퍼셉트론 기본 구조 : 세 가지 신경망의 재구성
4.1 다층 퍼셉트론 신경망 구조
4.2 은닉 계층의 수와 폭
4.3 비선형 활성화 함수
4.4 ReLU 함수
4.5 민스키의 XOR 문제와 비선형 활성화 함수
4.6 구현하기 : 다층 퍼셉트론 신경망 지원 함수
4.7 실행하기
4.8 마치며

CHAPTER 5 다층 퍼셉트론 모델 구조 : 꽃 이미지 분류 신경망
5.1 다층 퍼셉트론을 위한 클래스 설계
5.2 데이터 분할 : 학습, 검증, 평가
5.3 시각화
5.4 이미지 분류 문제와 꽃 이미지 분류 데이터셋
5.5 구현하기 : 모델 클래스
5.6 구현하기 : 데이터셋 클래스
5.7 구현하기 : 네 가지 데이터셋 파생 클래스
5.8 구현하기 : 꽃 이미지 분류 데이터셋 클래스
5.9 구현하기 : 수학 연산과 각종 부수적 기능
5.10 실행하기
5.11 마치며

CHAPTER 6 복합 출력의 처리 방법 : 오피스31 다차원 분류 신경망
6.1 오피스31 데이터셋과 다차원 분류
6.2 딥러닝에서의 복합 출력의 학습법
6.3 복합 출력을 위한 MlpModel 클래스와 Dataset 클래스의 역할
6.4 아담 알고리즘
6.5 구현하기 : 아담 모델 클래스
6.6 구현하기 : 오피스31 데이터셋 클래스
6.7 실행하기
6.8 마치며

[ PART III 합성곱 신경망(CNN) ]

CHAPTER 7 간단한 합성곱 모델 : 꽃 이미지 분류 신경망
7.1 다층 퍼셉트론의 문제점과 새로운 구조의 필요성
7.2 합성곱 계층
7.3 합성곱 연산의 패딩과 건너뛰기
7.4 풀링 계층
7.5 채널의 도입과 커널의 확장
7.6 합성곱과 풀링의 역전파 처리
7.7 합성곱 신경망의 일반적인 구성
7.8 세 가지 합성곱 연산 방법
7.9 다양한 계층의 처리를 위한 모델 확장
7.10 구현하기 : 간단한 합성곱 신경망 클래스
7.11 실행하기
7.12 마치며

CHAPTER 8 다섯 가지 정규화 확장 : 꽃 이미지 분류 신경망
8.1 부적합과 과적합
8.2 L2 손실
8.3 L1 손실
8.4 드롭아웃
8.5 잡음 주입
8.6 배치 정규화
8.7 정규화 기법 도입을 위한 계층의 추가
8.8 구현하기 : 정규화 확장 클래스
8.9 실행하기
8.10 마치며

CHAPTER 9 인셉션 모델과 레스넷 모델 : 꽃 이미지 분류 신경망
9.1 인셉션 모델
9.2 레스넷 모델
9.3 인셉션 모델과 레스넷 모델 구현을 위해 필요한 확장들
9.4 구현하기 : 확장된 합성곱 신경망 모델 클래스
9.5 구현하기 : 더미 데이터셋 클래스
9.6 실행하기 : 인셉션 모델
9.7 실행하기 : 레스넷 모델
9.8 마치며

[ PART IV 순환 신경망(RNN) ]

CHAPTER 10 기본 셀 순환 신경망 : 오토마타 문장 판별 신경망
10.1 시계열 데이터
10.2 순환 계층과 순환 벡터의 활용
10.3 순환 계층의 입출력 형태
10.4 순환 계층을 위한 시계열 데이터의 표현
10.5 순환 계층의 순전파와 역전파 처리
10.6 오토마타를 이용한 수식 표현의 생성과 검사
10.7 구현하기 : 간단한 순환 신경망 클래스
10.8 구현하기 : 오토마타 데이터셋
10.9 실행하기
10.10 마치며

CHAPTER 11 LSTM 순환 신경망 : 도시 소음 분류 신경망
11.1 순환 벡터와 기울기 정보의 소멸 및 폭주
11.2 LSTM의 구조와 동작 방식
11.3 쌍곡탄젠트 함수
11.4 LSTM 계층의 순전파와 역전파 처리
11.5 주파수 스펙트럼 분석을 이용한 음원 처리
11.6 음원 분류 데이터셋
11.7 구현하기 : LSTM 신경망 클래스
11.8 구현하기 : 음원 분류 데이터셋
11.9 실행하기
11.10 마치며

CHAPTER 12 CNN과 RNN의 결합 : 장면 전환 판별 신경망
12.1 비순환 계층에서의 시계열 데이터 처리
12.2 동영상 처리를 위한 합성곱 신경망과 순환 신경망의 결합
12.3 출력 계층과 후처리 단계에서의 시계열 데이터 처리
12.4 장면 전환 데이터셋
12.5 실행 부담을 줄이는 방법들
12.6 구현하기 : 확장된 순환 신경망 클래스
12.7 구현하기 : 장면 전환 데이터셋
12.8 실행하기
12.9 마치며

[ PART V 고급 응용 신경망 구조들 ]

CHAPTER 13 오토인코더 : 엠니스트 이미지 재현 및 분류 신경망
13.1 오토인코더의 구조
13.2 지도학습과 비지도학습
13.3 잡음 제거용 오토인코더
13.4 유사 이진 코드 생성과 시맨틱 해싱
13.5 지도학습이 추가된 확장 오토인코더 모델
13.6 확장 인코더 모델을 위한 엠니스트 데이터셋
13.7 구현하기 : 확장 오토인코더 모델 클래스
13.8 구현하기 : 오토인코더를 위한 엠니스트 데이터셋
13.9 실행하기
13.10 마치며

CHAPTER 14 인코더-디코더 : 엠니스트 이미지 숫자 읽기 신경망
14.1 인코더-디코더의 구조
14.2 인코더-디코더와 언어 처리
14.3 필기체 숫자 이미지를 영어로 읽기
14.4 필기체 숫자 이미지열을 한글로 읽기
14.5 인코더-디코더의 분리 학습 문제
14.6 구현하기 : 인코더-디코더 모델 클래스
14.7 구현하기 : 인코더-디코더를 위한 엠니스트 데이터셋
14.8 실행하기
14.9 마치며

CHAPTER 15 생성적 적대 신경망 : 회화 및 숫자 이미지 생성 신경망
15.1 생성적 적대 신경망의 구조
15.2 생성적 적대 신경망과 데이터 생성
15.3 생성적 적대 신경망의 순전파와 역전파 처리
15.4 구현하기 : 생성적 적대 신경망 모델 클래스
15.5 구현하기 : 생성적 적대 신경망을 위한 데이터셋
15.6 실행하기
15.7 마치며

한줄서평

  • 10
  • 8
  • 6
  • 4
  • 2

(한글 40자이내)
리뷰쓰기
한줄 서평 리스트
평점 한줄 리뷰 작성자 작성일 추천수

등록된 서평이 없습니다.